

山東冠熙環保設備有限公司
主營產品: 通風機
中壓風機-冠熙風機-耐高溫風機批發
價格
訂貨量(件)
¥7999.00
≥1
店鋪主推品 熱銷潛力款
钳钼钸钻钷钶钺钹钻钴钹







消聲蝸殼對風機氣動性能的影響原風機與不同消聲組合試驗所得的氣動性能對比如圖3 所示。試驗結果表明: 由于穿孔板相對于光滑的鋁板有著較高的壁面摩擦阻力,導致加裝穿孔板后的風機壓力和效率在整個測試工況范圍內都有不同程度的降低。4種消聲組合方式的壓力損失并不相同,當額定轉速為3 800 r /min,在設計工況下,A 組合改進風機全壓降低了約16.0 Pa,效率下降了約1.28%; B 組合改進風機全壓降低了約5.0 Pa,風機效率下降了約0.9%; C 組合改進風機全壓降低了約36.8 Pa,效率下降了約3.18%; D 組合改進風機全壓降低了約45.8 Pa,效率下降了約3.28%。
主要由于安裝穿孔板的面積不同,導致不同消聲組合方式的摩擦損失不同。B 組合即只在風機后蓋板上安裝穿孔板,風機壓力損失小。不同工況下,風機壓力和效率損失也不相同,在設計工況及偏大流量工況下,風機壓力和效率損失較大,效率也同步降低。主要原因是大流量工況下,蝸殼內部氣流速度較高,氣流與穿孔板之間的摩擦損失增加。消聲蝸殼為A 組合形式時與原風機的出口A聲級隨流量變化的對比圖。可以看出,不同工況下,A 型消聲蝸殼的降噪效果不同,風機在額定工況點附近,降噪效果好; 在大流量工況下,降噪效果變差,這主要因為大流量情況下,蝸殼內氣體流速較大,而氣體流速對吸聲材料的吸聲效果影響很大; 在小流量工況下,風機流動惡化,風機振動較大,導致振動噪聲很大以致降噪效果反而變差。與原風機相比,在額定工況點A 聲級降低約4.5 dB( A) ,在大流量工況下,A 聲級降低約3.6 dB( A) ,在小流量工況下,A 聲級降低約1.9 dB( A) 。
為改善風機受氣體粘性影響導致流動分離加劇的現象,在傳統蝸殼型線設計理論的基礎上,研究氣體粘性力矩對蝸殼壁線分布的影響,并采用動量矩修正方法對其進行改型設計。另外,為真實反映風機內流場分布情況,在標準k-ε 計算模型的擴散項中加入粘性應力作用,使其高計算誤差降低至3%。對比分析改型前后風機數值模擬計算和試驗測量結果可知,采用修改的k-ε 模型進行計算發現改型后風機內旋渦強度減小,蝸殼出口靠近蝸舌處流動分離得到改善。試驗結果表明:改型風機出口靜壓提升約25Pa,較大全壓效率較原型機提升約10%。
同時,由于蝸殼張開度擴大能夠抑制流動分離,使蝸舌附近區域的旋渦強度及其影響區域減小,從而有效地降低了多翼離心風機噪聲2.5dB。多翼離心風機廣泛應用于國民經濟的各個領域,是工業生產中主要耗能設備之一,蝸殼作為離心風機中不可或缺的基本元件,其結構的不對稱性及內部流動的復雜性會對葉輪出口氣流角造成較大影響,使其沿圓周方向呈現出明顯的不對稱性。而在風機實際運行過程中,風機葉輪出口氣流與蝸殼壁面間存在強烈的非定常干涉,使得蝸殼壁面成為風機的主要噪聲源。因此提高蝸殼型線設計水平,不僅能改善風機氣動性能,還能達到降低噪聲的效果。目前國內外學者對離心風機蝸殼型線的研究,主要集中在尋找能真實反映蝸殼內流體流動狀態的設計方法。
以風機蝸殼與葉輪出口在半徑方向上的間距隨方位角線性遞增來優化蝸殼型線,并用試驗證明了良好的蝸殼型線不僅能提高風機效率及全壓,還能改變流量-壓力曲線的變化趨勢;BEENA等[11]通過應用層次分析法(AHP),對蝸殼的重要幾何參數進行了優先排序,闡明了各參數對離心風機性能的影響;風機采用3種不同流量的五孔探頭,測量了風機蝸殼內流體的三維流動,得出傳統一維蝸殼型線設計方法忽略了風機內部嚴重的泄漏情況,應根據流體實際流動進行修正的結論。本文在傳統蝸殼型線設計理論基礎上,以某抽油煙機用多翼離心風機為研究對象,
風機采用動量矩修正方法對其進行性能優化。并考慮粘性應力的作用對原有k-ε計算模型進行修正,以期提高數值計算結果的準確度,為CFD數值模擬預測風機性能的可靠性提供參考。多翼離心風機由進口集流器、葉輪及蝸殼組成,具體結構如圖1所示。其設計轉速n=1200r/min,設計流量Qv=0.15m3/s,主要尺寸參數為:風機蝸殼寬度b1152mm,葉輪內徑1D210mm,葉輪外徑2D246mm,葉片進口安裝角178A,葉片出口安裝角2160A,葉片圓弧半徑r14mm,葉片數z60。為了提供更好的來流條件,給定較為準確的邊界條件,本研究在利用Solidworks軟件對風機進行三維建模時,分別將進風區域和出風區域進行延長處理,以保證進出口氣體的流動充分發展。另外,為了方便模型的建立,在盡量減小數值模擬誤差的前提下對電動機結構進行一定程度的簡化,
