

山東冠熙環保設備有限公司
主營產品: 通風機
高溫離心風機-除塵設備離心風機-冠熙風機
價格
訂貨量(件)
¥9999.00
≥1
店鋪主推品 熱銷潛力款
쑥쑠쑦쑢쑟쑝쑡쑤쑢쑞쑤







工業生產中的離心風機特別是離心式風機應用很廣泛,在一些生產裝置中甚至屬關鍵設備。風機的安全、可靠運行是實現穩定生產的重要保證。但由于種種原因,造成風機超過允許范圍的振動的現象并不少見,嚴重的劇烈振動會造成風機本體及其關聯設備破壞的設備事故,甚至還會造成人身安全事故。因此,必須高度重視風機的維護檢查工作。企業的離心風機技術人員及其操作人員和維修人員在工作中必須對風機的運行狀況進行監測、巡查,及時發現故障隱患并及時排除,防患于未然。本文研究的目的在于針對工業生產中常用的離心式風機運行中易于發生的振動現象進行研究和可采取的處理措施,應該能對生產一線中從事此類設備管理和維修的人員提供借鑒意義。
離心風機絕大多是由電動機驅動工作的主要由葉輪、蝸殼、軸和軸承座及一些控制附件組成,屬動設備。動設備完全不振動是不可能的,只是振動的允許范圍不同而已。一般來講,大型高速風機軸承采用軸瓦,潤滑采用潤滑油強制噴射潤滑,高速旋轉的主軸懸浮于油膜上,正常工況時振動很低。中小型的中低速風機軸承采用滾動軸承,常采用潤滑脂潤滑或潤滑油浸泡飛濺潤滑,正常工況時振動稍大。振動無論大小,只要符合相關技術要求即可,但是異常的、超標的振動必須及時處理,否則振動會惡化,后造成事故和經濟損失。
離心風機產生的原因是此次打表所用的磁性表座固定百分表的方式剛性和可靠性欠佳,當聯軸器轉到下方時,由于磁性表座、連接桿、緊固件和百分表的自重,造成百分表下墜,探頭脫離測點,結果就是產生上文所述的異常讀數。當檢修人員按作者建議制作的表架后,在檢修過程中,不再出現異常讀數,檢修任務按時圓滿完成。離心風機轉子不平衡和檢查處理措施造成風機轉子不平衡的原因主要有:葉輪出現不均勻的磨損或腐蝕;葉輪表面存在不均勻的積灰或附著物;葉片連接處存在裂紋或葉輪與輪轂、輪轂與軸頸的連接配合松動等。用測振儀測得數據,如果顯示振動值徑向較大而軸向較小或者振動值隨轉速上升而增大,都是轉子不平衡引起振動的特征。
預防處理措施主要有:
一是,根據離心風機的運行工況,在進風機前工序上采取除塵措施,控制減少進入風機的粉塵等含量;
二是,定期清理風機葉輪,順便仔細檢查葉輪是否存在裂縫以及葉輪與主軸的配合情況。一般來說,轉子不平衡引起的振動都是葉輪表面存在不均勻的積灰或附著物產生的。對于難于清洗的離心風機葉輪轉子可采用化學法清洗,如硫酸生產中二硫化硫主風機葉輪,可采用氫氧化鈣稀水,再用高壓噴射機噴射清洗葉輪,速度快效果佳。
離心風機性能試驗原理及其裝置為了驗證修正后數值計算模型的準確度,對原風機的不同工況氣動性能試驗。將修正前后數值計算模型預測原型機性能結果與試驗值作對比分析,由數據可知,采用標準k-ε 模型預測的風機性能曲線較試驗值存在一定誤差,其較大誤差值達9.5%,修正的k-ε 模型,各流量工況下離心風機出口靜壓計算值與試驗值吻合,其性能曲線趨于重合,兩者誤差值明顯減小,且較大誤差降低至3%,充分驗證了所采用的數值計算模型修正方法的可行性,同時為下文離心風機性能的準確度和可靠性預測提供支撐。設計原理分析原風機蝸殼內壁型線采用的是傳統蝸殼型線設計方法,即不考慮壁面粘性摩擦的影響,氣流動量矩保持不變,運用不等邊基圓法繪制的近似阿基米德螺旋線。而實際流動過程中,氣體粘性作用常導致其速度在過流斷面上呈現的分布不均勻現象。
對于低速小型多翼離心風機而言,由于氣體流道狹窄,受粘性作用的影響,風機內壁面邊界層分離加劇,經過葉輪加速的氣體流速沿蝸殼徑向方向逐漸減小,而在離心風機蝸殼出口處,由于同時受到蝸舌結構和蝸殼壁面的影響,其流速為管道流速度分布,受粘性作用的影響,蝸殼內流體于整個流道空間內呈現速度分布不均勻的現象,因此在實際流動過程中,流體動量矩并不是不變的,而是隨流動的進行不斷減小,故基于動量矩守恒定律設計的傳統蝸殼型線存在動量修正的必要。改型設計方法由于氣體粘性力無法通過簡單的公式運算獲得,且其大小受氣體速度的影響,因此本文采用一種簡單化的求解方法,即基于傳統不等邊基圓法,離心風機運用改進后的k-ε 模型對原風機進行數值模擬,設置如圖8 所示的4 個監測截面,其方位角φ 分別為90°、180°、270°、360°。通過Fluent 后處理計算得出蝸殼壁面區域于以上4 個截面處所受粘性力大小Fν ,測量力矩中心至力原點距離R,由額定工況下風機總質量流量q 計算得單位質量流體所受黏性力矩平均值m FR / q。
